x^2-243=0

Simple and best practice solution for x^2-243=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-243=0 equation:



x^2-243=0
a = 1; b = 0; c = -243;
Δ = b2-4ac
Δ = 02-4·1·(-243)
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{3}}{2*1}=\frac{0-18\sqrt{3}}{2} =-\frac{18\sqrt{3}}{2} =-9\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{3}}{2*1}=\frac{0+18\sqrt{3}}{2} =\frac{18\sqrt{3}}{2} =9\sqrt{3} $

See similar equations:

| 15=1/2n+5 | | 184-x=36 | | 236=-x+138 | | 165-w=273 | | 4+2(5x-8)=2x+5 | | 4+2(5x-8)=3x-9 | | 4+2(5x-8)=9x-7 | | 4+2(5x-8)=8x-6 | | 5(7x-3) =12x-11 | | 4+2(5x-8)=3x-1 | | 4+2(5x-8)=2-5 | | 4+2(5x-8)=5x-2 | | 2(x-5)+2=18 | | 2x^(2)+8x+4=0 | | 6−x/6=−5 | | 2x+3=-5x+24.7 | | 4(x+9)-30=13x+8-10x | | 2(4x+1)-3=2-4 | | 3/2/x=-3 | | 2(4x+1)-3=2-1 | | 3/4+1/2x=x-1/4 | | 8x+10x-4=9(2x+1)-14 | | 2(4x+1)-3=8x-2 | | 2(4x+1)-3=4x-1 | | -10(x+2)-5x=-9x+16 | | 0.9x+5.1x-7=2(2.5-3) | | 2(4x+1)-3=4-2 | | 8^(x-2)=5^(2x) | | 2(4x-1)-3=8x-1 | | 9x-2x+3=-12+7x+15 | | -5-2-2x+4=-3+3 | | -3(x-3)-1=-3x-3 |

Equations solver categories